
HDL Verifier™

Getting Started Guide

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

HDL Verifier™ Getting Started Guide
© COPYRIGHT 2003–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Updated for Version 1.1 (Release 13SP1)
June 2004 Online only Updated for Version 1.1.1 (Release 14)
October 2004 Online only Updated for Version 1.2 (Release 14SP1)
December 2004 Online only Updated for Version 1.3 (Release 14SP1+)
March 2005 Online only Updated for Version 1.3.1 (Release 14SP2)
September 2005 Online only Updated for Version 1.4 (Release 14SP3)
March 2006 Online only Updated for Version 2.0 (Release 2006a)
September 2006 Online only Updated for Version 2.1 (Release 2006b)
March 2007 Online only Updated for Version 2.2 (Release 2007a)
September 2007 Online only Updated for Version 2.3 (Release 2007b)
March 2008 Online only Updated for Version 2.4 (Release 2008a)
October 2008 Online only Updated for Version 2.5 (Release 2008b)
March 2009 Online only Updated for Version 2.6 (Release 2009a)
September 2009 Online only Updated for Version 3.0 (Release 2009b)
March 2010 Online only Updated for Version 3.1 (Release 2010a)
September 2010 Online only Updated for Version 3.2 (Release 2010b)
April 2011 Online only Updated for Version 3.3 (Release 2011a)
September 2011 Online only Updated for Version 3.4 (Release 2011b)
March 2012 Online only Updated for Version 4.0 (Release 2012a)

Contents

Introduction

1
Product Description . 1-2
Key Features . 1-2

HDL Cosimulation . 1-3
HDL Cosimulation with MATLAB or Simulink and the
HDL Simulator . 1-3

Communications for HDL Cosimulation 1-8
Hardware Description Language (HDL) Support 1-8
HDL Cosimulation Workflows Described in the User
Guide . 1-9

FPGA Development . 1-10
FPGA Development with HDL Verifier 1-10
FPGA-in-the-Loop Simulation . 1-10
FPGA Automation with Filter Design HDL Coder 1-11

TLM Component Generation . 1-12
Generating TLM Components for Use with Virtual Platform
Development . 1-12

Typical Users and Applications . 1-13

Installation

2
Installing the HDL Verifier Software 2-2

Installing Related Application Software 2-3

v

Product Requirements

3
What You Need to Know . 3-2
For Cosimulating with HDL Simulators 3-2
For FPGA-in-the-Loop Simulation . 3-2
For FPGA Automation . 3-3
For Generating OSCI-Compatible TLM Components 3-3
Additional Useful Experience . 3-3
Product Limitations . 3-3

Required Products . 3-4
Supported EDA Tools . 3-4
System Requirements . 3-7
Product Feature and Platform Support 3-7
Optional Application Software . 3-9

Getting Help

4
Information Overview . 4-2

Online Help . 4-3

Using “What’s This?” Context-Sensitive Help 4-5

Demos and Tutorials . 4-7
Demos . 4-7
Tutorials . 4-7

vi Contents

HDL Code Importing

5
Generate HDL Cosimulation Interfaces from Existing
HDL Code . 5-2
Create a MATLAB Function From Existing HDL Code . . . 5-2
Create a MATLAB System Object From Existing HDL
Code . 5-9

Create an HDL Cosimulation Block From Existing HDL
Code . 5-10

Perform Cosimulation . 5-21

Import HDL Code For FPGA-in-the-Loop
Verification . 5-24
Preparing to Use the FPGA-in-the-Loop (FIL) Wizard 5-24
Running the FIL Wizard . 5-24
Performing FIL Simulation . 5-29

Index

vii

viii Contents

1

Introduction

• “Product Description” on page 1-2

• “HDL Cosimulation” on page 1-3

• “FPGA Development” on page 1-10

• “TLM Component Generation” on page 1-12

1 Introduction

Product Description
Verify VHDL® and Verilog® using HDL simulators and FPGA-in-the-loop
test benches

HDL Verifier™ automates Verilog and VHDL design verification using HDL
simulators and FPGA hardware-in-the-loop. It provides interfaces that
link MATLAB® and Simulink® with Cadence Incisive®, Mentor Graphics®

ModelSim®, and Mentor Graphics Questa® HDL simulators. It also supports
FPGA-in-the-loop verification with Xilinx® and Altera® FPGA boards.

HDL Verifier automates verification by using MATLAB or Simulink to
stimulate your HDL code and analyze its response. This approach eliminates
the need to author standalone Verilog or VHDL test benches.

Key Features

• Cosimulation support for Cadence Incisive and for Mentor Graphics
ModelSim and Questa

• FPGA-in-the-loop verification using Xilinx and Altera FPGA boards

• MATLAB functions and Simulink blocks

• Generation of IEEE 1666 SystemC TLM 2.0 compatible transaction-level
models

• Interactive or batch-mode cosimulation and debugging

• Single-machine, multiple-machine, and cross-network cosimulation

1-2

HDL Cosimulation

HDL Cosimulation

In this section...

“HDL Cosimulation with MATLAB or Simulink and the HDL Simulator”
on page 1-3

“Communications for HDL Cosimulation” on page 1-8

“Hardware Description Language (HDL) Support” on page 1-8

“HDL Cosimulation Workflows Described in the User Guide” on page 1-9

HDL Cosimulation with MATLAB or Simulink and the
HDL Simulator
HDL Verifier functions as a cosimulation interface that provides a
bidirectional link between MATLAB and Simulink and HDL simulators from
Mentor Graphics and Cadence®, enabling verification of VHDL, Verilog,
and mixed-language implementations. This software enables interactive
and batch-mode cosimulation on a single computer, across heterogeneous
platforms, or across a network.

The HDL Verifier software consists of MATLAB functions, a MATLAB System
object, and a library of Simulink blocks, all of which establish communication
links between the HDL simulator and MATLAB or Simulink.

HDL Verifier software streamlines FPGA and ASIC development by
integrating tools available for these processes:

1 Developing specifications for hardware design reference models

2 Implementing a hardware design in HDL based on a reference model

3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks® products
fit into this hardware design scenario.

1-3

1 Introduction

As the figure shows, HDL Verifier software connects tools that traditionally
have been used discretely to perform specific steps in the design process.
By connecting these tools, the link simplifies verification by allowing you
to cosimulate the implementation and original specification directly. This
cosimulation results in significant time savings and the elimination of errors
inherent to manual comparison and inspection.

In addition to the preceding design scenario, HDL Verifier software enables
you to work with tools in the following ways:

• Use MATLAB or Simulink to create test signals and software test benches
for HDL code

• Use MATLAB or Simulink to provide a behavioral model for an HDL
simulation

• Use MATLAB analysis and visualization capabilities for real-time insight
into an HDL implementation

• Use Simulink to translate legacy HDL descriptions into system-level views

Note You can cosimulate a module using SystemVerilog, SystemC or both
with MATLAB or Simulink using the HDL Verifier software. Write simple
wrappers around the SystemC and make sure that the SystemVerilog
cosimulation connections are to ports or signals of data types supported by the
link cosimulation interface.

1-4

HDL Cosimulation

More discussion on how cosimulation works can be found in the following
sections:

• “Linking with MATLAB and the HDL Simulator” on page 1-5

• “Linking with Simulink and the HDL Simulator” on page 1-6

• “The HDL Cosimulation Wizard” on page 1-8

Linking with MATLAB and the HDL Simulator
When linked with MATLAB, the HDL simulator functions as the client, as
the following figure shows.

������
��	
�	

���
�
������	
��
���

�
��

���

���

��

��

�������

��������

In this scenario, a MATLAB server function waits for service requests that
it receives from an HDL simulator session. After receiving a request, the
server establishes a communication link and invokes a specified MATLAB
function that computes data for, verifies, or visualizes the HDL module (coded
in VHDL or Verilog) that is under simulation in the HDL simulator.

After the server is running, you can start and configure the HDL simulator or
use with MATLAB with the supplied HDL Verifier function:

• nclaunch (Incisive)

• vsim (ModelSim)

The following figure shows how a MATLAB test bench function wraps around
and communicates with the HDL simulator during a test bench simulation
session.

1-5

1 Introduction

The following figure shows how a MATLAB component function is wrapped
around by and communicates with the HDL simulator during a component
simulation session.

When you begin a specific test bench or component session, you specify
parameters that identify the following information:

• The mode and, if applicable, TCP/IP data for connecting to a MATLAB
server

• The MATLAB function that is associated with and executes on behalf of
the HDL instance

• Timing specifications and other control data that specifies when the
module’s MATLAB function is to be called

Linking with Simulink and the HDL Simulator
When linked with Simulink, the HDL simulator functions as the server, as
shown in the following figure.

1-6

HDL Cosimulation

�
���
��
��
��������
������	

��	
�	
���

�����

��

�
��
�������

��������

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You begin a cosimulation
session from Simulink. After a session is started, you can use Simulink and
the HDL simulator to monitor simulation progress and results. For example,
you might add signals to an HDL simulator Wave window to monitor
simulation timing diagrams.

Using the Block Parameters dialog box for an HDL Cosimulation block, you
can configure the following:

• Block input and output ports that correspond to signals (including internal
signals) of an HDL module. You can specify sample times and fixed-point
data types for individual block output ports if desired.

• Type of communication and communication settings used for exchanging
data between the simulation tools.

• Rising-edge or falling-edge clocks to apply to your module. You can
individually specify the period of each clock.

• Tcl commands to run before and after the simulation.

HDL Verifier software equips the HDL simulator with a set of customized
functions. For ModelSim, when you use the function vsimulink, you execute
the HDL simulator with an instance of an HDL module for cosimulation
with Simulink. After the module is loaded, you can start the cosimulation
session from Simulink. Incisive users can perform the same operations with
the function hdlsimulink.

HDL Verifier software also includes a block for generating value change dump
(VCD) files. You can use VCD files generated with this block to perform the
following tasks:

• View Simulink simulation waveforms in your HDL simulation environment

1-7

1 Introduction

• Compare results of multiple simulation runs, using the same or different
simulation environments

• Use as input to post-simulation analysis tools

The HDL Cosimulation Wizard
HDL Verifier contains the Cosimulation Wizard feature, which uses existing
HDL code to create a customized MATLAB function (test bench or component),
MATLAB Systemm object, or Simulink HDL Cosimulation block. For more
information, see “HDL Cosimulation Wizard”.

Communications for HDL Cosimulation
The mode of communication that you use for a link between the HDL
simulator and MATLAB or Simulink depends on whether your application
runs in a local, single-system configuration or in a network configuration. If
these products and MathWorks products can run locally on the same system
and your application requires only one communication channel, you have the
option of choosing between shared memory and TCP/IP socket communication.
Shared memory communication provides optimal performance and is the
default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system and
network configurations. This option offers the greatest scalability. For more
on TCP/IP socket communication, see “Choosing TCP/IP Socket Ports”.

Hardware Description Language (HDL) Support
All HDL Verifier MATLAB functions and the HDL Cosimulation block offer
the same language-transparent feature set for both Verilog and VHDL models.

HDL Verifier software also supports mixed-language HDL models (models
with both Verilog and VHDL components), allowing you to cosimulate VHDL
and Verilog signals simultaneously. Both MATLAB and Simulink software
can access components in different languages at any level.

1-8

HDL Cosimulation

HDL Cosimulation Workflows Described in the User
Guide
The HDL Verifier User Guide provides instruction for using the verification
software with supported HDL simulators for the following workflows:

• Simulating an HDL Component in a MATLAB Test Bench Environment

• Replacing an HDL Component with a MATLAB Component Function

• Simulating an HDL Component in a Simulink Test Bench Environment

• Replacing an HDL Component with a Simulink Algorithm

• Recording Simulink Signal State Transitions for Post-Processing

1-9

1 Introduction

FPGA Development

In this section...

“FPGA Development with HDL Verifier” on page 1-10

“FPGA-in-the-Loop Simulation” on page 1-10

“FPGA Automation with Filter Design HDL Coder” on page 1-11

FPGA Development with HDL Verifier
HDL Verifier works with Simulink and HDL Coder™ or MATLAB and Filter
Design HDL Coder™ and the supported FPGA development environment
to prepare your automatically generated HDL Code for implementation in
an FPGA. HDL Verifier creates and manages your Xilinx ISE project and
integrates a clock module with your design in an automatically generated
top level module.

The FIL Wizard
HDL Verifier contains the FIL Wizard feature, which uses existing HDL code
to create a customized FPGA implementation. For more information, see
“Generating a FIL Block Using the FIL Wizard”.

FPGA-in-the-Loop Simulation
FPGA-in-the-Loop simulation allows you to run a Simulink simulation with
an FPGA board strictly synchronized with Simulink. This lets you get real
world data into your design while accelerating your simulation with the speed
of an FPGA.

You can generate a FIL programming file in one of the following ways:

• Use the HDL Verifier FIL Wizard.

• Use the HDL Coder Workflow Advisor (see HDL Coder for instruction).

The FIL Wizard uses any synthesizable HDL code including code
automatically generated from Simulink models by HDL Coder software.
When you use FIL in the Workflow Advisor, HDL Coder uses the loaded
design to create the HDL code. Either way, this HDL code is then augmented

1-10

FPGA Development

by customized code for FIL communication with your design and assembled
into an FPGA project. The applicable downstream tools are used to process
that project to create a programming file that is automatically downloaded to
the FPGA device on a development board for verification. See HDL Verifier
product page for a list of currently supported devices and boards.

HDL Verifier supports the use of a FIL block in a model reference block.

FPGA Automation with Filter Design HDL Coder
Create, update, and manage FPGA projects with Xilinx ISE.HDL Verifier
provides a Project Generator for generating HDL code from filter code using
Filter Design HDL Coder.

HDL Verifier packages these files as a complete FPGA development
environment project for use with Xilinx ISE.

With the interface, you can do the following:

• Take code generation process one step further and package up the
generated code so you can use it with Xilinx tools (most of project info
provided by HDL Verifier for project creation).

• Make changes to project info: automatically update generated code, add
Simulink files to existing project, automatically manage generated files
in associated project.

• Get settings from existing project and save these settings with the model.

FPGA Automation Workflows Described in the User Guide
The HDL Verifier User Guide provides instruction for using the verification
software with supported FPGA development environments for the following
workflows:

• Creating a new FPGA project

• Adding generated files to an existing FPGA project

• Generating Tcl scripts for project generation

See “FPGA Automation with Filter Design HDL Coder”.

1-11

http://www.mathworks.com/products/eda-simulator/requirements.html
http://www.mathworks.com/products/eda-simulator/requirements.html

1 Introduction

TLM Component Generation

In this section...

“Generating TLM Components for Use with Virtual Platform Development”
on page 1-12

“Typical Users and Applications” on page 1-13

Generating TLM Components for Use with Virtual
Platform Development
HDL Verifier lets you create a SystemC Transaction Level Model (TLM) that
can be executed in any OSCI-compatible TLM 2.0 environment, including a
commercial virtual platform.

When used with virtual platforms, HDL Verifier joins two different modeling
environments: Simulink for high-level algorithm development and virtual
platforms for system architectural modeling. The Simulink modeling typically
dispenses with implementation details of the hardware system such as
processor and operating system, system initialization, memory subsystems,
device configuration and control, and the particular hardware protocols for
transferring data both internally and externally.

The virtual platform is a simulation environment that is concerned about the
hardware details: it has components that map to hardware devices such as
processors, memories, and peripherals, and a means to model the hardware
interconnect between them.

Although many goals could be met with a virtual platform model, the ideal
scenario for virtual platforms is to allow for software development—both high
level application software and low-level device driver software—by having
fairly abstract models for the hardware interconnect that allow the virtual
platform to run at near real-time speeds, as demonstrated in the following
diagram.

1-12

TLM Component Generation

The functional model provides a sort of halfway point between the speed you
can achieve with abstraction and the accuracy you get with implementation.

Typical Users and Applications
Using HDL Verifier and Simulink, you can create a TLM-2.0-compliant
SystemC Transaction Level Model (TLM) that can be executed in any
OSCI-compatible TLM 2.0 environment, including a commercial virtual
platform.

Typical users and applications include:

• System-level engineers designing electronic system models that include
architectural characteristics

• Software developers who want to incorporate an algorithm into a virtual
platform without using an instruction set simulator (ISS).

• Hardware functional verification engineers. In this case, the algorithm
represents a piece of hardware going into a chip.

1-13

1 Introduction

1-14

2

Installation

• “Installing the HDL Verifier Software” on page 2-2

• “Installing Related Application Software” on page 2-3

2 Installation

Installing the HDL Verifier Software
For details on how to install the HDL Verifier software, see the MATLAB
installation instructions.

2-2

Installing Related Application Software

Installing Related Application Software
Based on your configuration decisions and the software required for your
HDL Verifier application, identify software you need to install and where you
need to install it. For example, if you need to run multiple instances of the
link MATLAB server on different machines, you need to install MATLAB
and any applicable toolbox software on multiple systems. Each instance of
MATLAB can run only one instance of the server.

For details on how to install the HDL simulator, see the installation
instructions for that product. For information on installing and activating
MathWorks products, see the MATLAB installation and activation
instructions.

2-3

2 Installation

2-4

3

Product Requirements

• “What You Need to Know” on page 3-2

• “Required Products” on page 3-4

3 Product Requirements

What You Need to Know
The documentation provided with the HDL Verifier software assumes users
have a moderate level of prerequisite knowledge in the following subject areas.

In this section...

“For Cosimulating with HDL Simulators” on page 3-2

“For FPGA-in-the-Loop Simulation” on page 3-2

“For FPGA Automation” on page 3-3

“For Generating OSCI-Compatible TLM Components” on page 3-3

“Additional Useful Experience” on page 3-3

“Product Limitations” on page 3-3

For Cosimulating with HDL Simulators

• Hardware design and system integration

• VHDL and/or Verilog

• Cadence Incisive or Mentor Graphics ModelSim simulators

• MATLAB

• Experience with Simulink and Simulink Fixed Point™ software is required
for applying the Simulink component of the product

• Experience with Fixed-Point Toolbox™ software required for working with
MATLAB System objects

For FPGA-in-the-Loop Simulation

• FPGA design and implementation

• VHDL and/or Verilog

• Simulink and Simulink Fixed Point software

Some familiarity with Xilinx ISE or Altera Quartus II may be helpful (see
supported versions in “Required Products” on page 3-4).

3-2

What You Need to Know

For FPGA Automation

• FPGA design and implementation

• VHDL and/or Verilog

• Filter Design HDL Coder software

Some familiarity with Xilinx ISE may be helpful.

For Generating OSCI-Compatible TLM Components

• Simulink

• Embedded Coder™ (some knowledge helpful)

• TLM 2.0

• System C 2.2 (compiling, linking, and executing)

Additional Useful Experience
Depending on your application, experience with the following MATLAB
toolboxes and Simulink blocksets might also be useful:

• Signal Processing Toolbox™

• Communications System Toolbox™

• DSP System Toolbox™

• Computer Vision System Toolbox™

• Simulink Fixed Point

• Embedded Coder

Product Limitations
Compatibility with Simulink Code Generation:

• HDL Coder: The HDL Verifier HDL Cosimulation block does participate in
code generation with HDL Coder.

• Simulink Coder™: The HDL Verifier HDL Cosimulation block does not
participate in code generation with Simulink Coder for C code generation.

3-3

3 Product Requirements

Required Products

In this section...

“Supported EDA Tools” on page 3-4

“System Requirements” on page 3-7

“Product Feature and Platform Support” on page 3-7

“Optional Application Software” on page 3-9

Supported EDA Tools

• “Cosimulation Requirements” on page 3-4

• “FPGA Verification Requirements” on page 3-5

Cosimulation Requirements

• “Cadence Incisive Usage Requirements” on page 3-4

• “Mentor Graphics Questa and ModelSim Usage Requirements” on page 3-5

Cadence Incisive Usage Requirements. MATLAB and Simulink support
Cadence verification tools using HDL Verifier.

Use one of these recommended versions, which have been fully tested against
the current release:

• IES 10.2-s040

• IES 9.2-s014

• IUS 8.2-s009

The HDL Verifier shared libraries (liblfihdls*.so, liblfihdlc*.so) are
built using the gcc included in the Cadence Incisive simulator platform
distribution. Before you link your own applications into the HDL simulator,
first try building against this gcc. See the HDL simulator documentation for
more details about how to build and link your own applications.

3-4

Required Products

Mentor Graphics Questa and ModelSim Usage Requirements.
MATLAB and Simulink support Mentor Graphics verification tools using
HDL Verifier.

Use one of the following recommended versions. Each version has been fully
tested against the current release:

• ModelSim SE 10.0c, 6.6d, 6.5f

• ModelSim PE 10.0c, 6.6d, 6.5f

• ModelSim DE 10.0c

• Questa 10.0a

The Linux® platform requires that HDL Verifier software run gcc c++
libraries (4.1 or later). You should install a recent version of the gcc c++
library on your computer. To determine which libraries are installed on your
computer, type the command:

gcc -v

FPGA Verification Requirements

• “Xilinx ISE Usage Requirements” on page 3-5

• “Altera Quartus II Usage Requirements” on page 3-6

• “Supported FPGA Devices for FIL Simulation” on page 3-6

• “Supported FPGA Device Families for Clock Module Generation” on page
3-6

Xilinx ISE Usage Requirements. MATLAB and Simulink support Xilinx
design tools using HDL Verifier.

• FPGA-in-the-Loop and FPGA Automation are tested with Xilinx ISE 13.1.

• ISE 11.1 or newer is recommended

• Additional requirements for clock module generation using FPGA
Automation:

3-5

3 Product Requirements

- 12.1 or later: Windows® only

- 11.4: Windows 32-bit only

• Consult Xilinx user documentation for compatibility of ISE tools with
various Linux distributions.

Altera Quartus II Usage Requirements. MATLAB and Simulink support
Altera design tools using HDL Verifier.

FPGA-in-the-Loop is tested with Altera Quartus II 11.0.

Supported FPGA Devices for FIL Simulation. HDL Verifier supports FIL
simulation on the devices shown in the following table.

Device
Family

Board

Spartan-6 Spartan-6 SP605
Spartan-6 SP601
XUP Atlys Spartan-6

Virtex-6 Virtex-6 ML605

Virtex-5 Virtex-5 ML505
Virtex-5 ML506
Virtex-5 ML507
Virtex-5 XUPV5–LX110T

Virtex-4 Virtex-4 ML401
Virtex-4 ML402
Virtex-4 ML403

Altera Arria II GX FPGA development kit
Cyclone III FPGA development kit
Cyclone IV GX FPGA development kit
DE2-115 development and education board

Supported FPGA Device Families for Clock Module Generation. For
project generation with Filter Design HDL Coder, see Xilinx documentation
for a full list of supported FPGA families in ISE.

3-6

Required Products

With the current release, clock module generation is supported for the
following device families:

• Spartan-3

• Spartan-3A and Spartan-3AN

• Spartan-3A DSP

• Spartan-3E

• Spartan-6

• Virtex-4

• Virtex-5

System Requirements
Visit the HDL Verifier Requirements page for general system requirements
and product version availability.

Product Feature and Platform Support

Product
Feature

Required
Products

Recommended
Products

Supported
Platforms

MATLAB and
HDL simulator
cosimulation
(function)

MATLAB Fixed-Point
Toolbox, Signal
Processing
Toolbox

Windows 32- and
64-bit; Linux 32-
and 64-bit

MATLAB
System object
and HDL
cosimulation

MATLAB and
Fixed-Point
Toolbox

Communications
System Toolbox,
DSP System
Toolbox

Windows 32- and
64-bit; Linux 32-
and 64-bit

Simulink and
HDL simulator
cosimulation

Simulink,
Simulink Fixed
Point, and
Fixed-Point
Toolbox

Signal
Processing
Toolbox, DSP
System Toolbox

Windows 32- and
64-bit; Linux 32-
and 64-bit

3-7

http://www.mathworks.com/products/hdl-verifier/requirements.html

3 Product Requirements

Product
Feature

Required
Products

Recommended
Products

Supported
Platforms

FPGA-in-the-Loop Simulink,
Simulink
Fixed Point,
Fixed-Point
Toolbox, and
HDL Coder

Filter Design
HDL Coder

Windows 32- and
64-bit; Linux 32-
and 64-bit

FPGA
Automation for
Filter Design

MATLAB and
Filter Design
HDL Coder

Windows 32- and
64-bit; Linux 32-
and 64-bit

TLM Generator Simulink Coder
and Embedded
Coder

Windows 32-bit
and 64–bit;
Linux 32- and
64-bit

3-8

Required Products

Optional Application Software
To create the most robust development environment for your application
consider adding the following MathWorks products to your HDL Verifier
setup:

For HDL Cosimulation

• Communications System Toolbox

• DSP System Toolbox

• Signal Processing Toolbox

• Computer Vision System Toolbox

For Generating OSCI-Compatible TLM Components

• Simulink Fixed Point

• Embedded Coder

3-9

3 Product Requirements

3-10

4

Getting Help

• “Information Overview” on page 4-2

• “Online Help” on page 4-3

• “Using “What’s This?” Context-Sensitive Help” on page 4-5

• “Demos and Tutorials” on page 4-7

4 Getting Help

Information Overview
The following information is available with this product.

Getting Started Explains what HDL Verifier is, the
steps for installing and setting up
the product, how you might apply
the product to the hardware design
process, and how to gain access to
product documentation and online
help. Directs you to product demos
and tutorials.

“HDL Verification with
Cosimulation”

Explains what you need to know
to cosimulate with MATLAB
or Simulink, using either as a
component or a test bench, and your
HDL simulator.

“SystemC TLM 2.0 Generation” Provides instructions for creating a
SystemC Transaction Level Model
(TLM), which you can execute
in any OSCI-compatible TLM 2.0
environment, including a commercial
virtual platform.

“FPGA-in-the-Loop and FPGA
Automation”

Provides instruction for creating,
updating, and managing ISE
projects using HDL generated from
HDL Coder or Filter Design HDL
Coder software.

“Block Reference” Provides descriptions and examples
of the blocks available for use in
Simulink.

“Function Reference” Provides descriptions and examples
of the functions available for use
with HDL Verifier software.

“Demos and Tutorials” on page 4-7 Provides examples of how you would
use HDL Verifier software.

4-2

Online Help

Online Help

Online Help in the MATLAB Help
Browser

You can access online help by either
of the following methods:

• Click the HDL Verifier product
link in the Help browser’s
Contents pane.

• Use theMATLAB doc command at
the MATLAB command prompt:

>>doc edalink

Help for HDL Verifier MATLAB
Functions

You can access function help by
either of the following methods:

• By issuing the MATLAB help
command. For example, enter the
following command:

>>help hdldaemon

to get the MATLAB help for the
hdldaemon function.

• By clicking the icon in the
MATLAB command window.

Context-sensitive “What’s This?”
help

For options that appear in the TLM
Generation and FPGA Automation
GUIs. Click a GUI Help button
or right-click on a GUI option
to display help on that dialog
or item. For more information
on using context-sensitive help
(CSH), see “Using “What’s This?”
Context-Sensitive Help” on page 4-5.

Block Reference Pages You can access block reference pages
through the Simulink interface. You
can also access these block reference

4-3

4 Getting Help

pages by clicking Help on any block
dialog box.

4-4

Using “What’s This?” Context-Sensitive Help

Using “What’s This?” Context-Sensitive Help
“What’s This?” context-sensitive help (CSH) topics are available for each
option in the HDL Verifier GUIs. Use CSH to find more information when
using the GUIs to configure options for TLM generation or FPGA project
management.

To use CSH, follow these steps:

1 Place your cursor over the label or control for an option.

2 Right-click. A “What’s This?” button appears. The following display shows
the “What’s This?” button appearing after a right-click on the Workflow
option in the EDA Link pane.

3 Left-click on “What’s This?” to view the CSH that describes the option.

4-5

4 Getting Help

4-6

Demos and Tutorials

Demos and Tutorials

In this section...

“Demos” on page 4-7

“Tutorials” on page 4-7

Demos
The demos give you a quick view of the product’s capabilities and application
examples that you can run with limited product exposure. You can find the
HDL Verifier demos with the online documentation. To access demos, type
at the MATLAB command prompt:

>> demos

Select HDL Verifier > Demos from the navigational pane.

Tutorials
Tutorials provide procedural instruction on how to apply the product. Some
focus on features while others focus on application scenarios. The tutorials
listed here have a feature focus and address the use of the HDL Verifier
software with HDL simulators and Simulink or MATLAB.

• “Verify Raised Cosine Filter Design With Generated MATLAB Component”

• “Verify Raised Cosine Filter Design With Generated Simulink Test Bench”

• “Verify HDL Model with MATLAB Testbench (Tutorial)”

• “Verify HDL Model with Simulink Test Bench (Tutorial)”

• “Visually Comparing Simulink Signals with HDL Signals (Tutorial)”

4-7

4 Getting Help

4-8

5

HDL Code Importing

• “Generate HDL Cosimulation Interfaces from Existing HDL Code” on
page 5-2

• “Import HDL Code For FPGA-in-the-Loop Verification” on page 5-24

5 HDL Code Importing

Generate HDL Cosimulation Interfaces from Existing HDL
Code

In this section...

“Create a MATLAB Function From Existing HDL Code” on page 5-2

“Create a MATLAB System Object From Existing HDL Code” on page 5-9

“Create an HDL Cosimulation Block From Existing HDL Code” on page 5-10

“Perform Cosimulation” on page 5-21

Create a MATLAB Function From Existing HDL Code

• “Invoke Cosimulation Wizard” on page 5-2

• “Select Cosimulation Type” on page 5-3

• “Select HDL Files to Import” on page 5-4

• “Specify HDL Compilation Commands” on page 5-5

• “Select HDL Modules for Cosimulation” on page 5-6

• “Specify Callback Schedule Parameters” on page 5-8

• “Generate Scripts” on page 5-9

• “Complete the Component or Test Bench Function” on page 5-9

Invoke Cosimulation Wizard

1 Start MATLAB.

2 Enter the following command at the command prompt:

>> cosimWizard

The Cosimulation Wizard opens.

Continue with the next task: “Select Cosimulation Type” on page 5-3.

5-2

Generate HDL Cosimulation Interfaces from Existing HDL Code

Select Cosimulation Type

1 Select HDL cosimulation with MATLAB to create a MATLAB function
template.

2 HDL Simulator

Select your HDL simulator. You may choose either Cadence Incisive or
Mentor Graphics ModelSim.

3 Specify where the Cosimulation Wizard can find your HDL simulator
executables. You must enter a valid path to the HDL simulator executables
before you can continue.

5-3

5 HDL Code Importing

4 Click Next.

Select HDL Files to Import

1 Add files by clicking Add.

2 Remove files by first highlighting the file name in the File List, and then
clicking Remove.

3 Move file positions in the list by selecting the file to move and clicking
Up or Down.

4 Click Next.

5-4

Generate HDL Cosimulation Interfaces from Existing HDL Code

Specify HDL Compilation Commands

1 Review the automatically generated HDL compilation commands. Enter
any changes to the commands in the Compilation Commands box.

2 (Optional) Click Restore Default Commands to go back to the
automatically generated HDL compilation commands at any time.

3 Click Next.

5-5

5 HDL Code Importing

Select HDL Modules for Cosimulation
The dialog box for HDL Module Selection varies depending on whether you
have set Cosimulation type to ModelSim or Incisive®.

HDL Module Selection for ModelSim

5-6

Generate HDL Cosimulation Interfaces from Existing HDL Code

HDL Module Selection for Incisive

1 Enter the name of the module where you see Name of HDL module to
cosimulate with.

2 Provide any additional elaboration options in Elaboration options.

3 Specify additional simulation options where you see Simulation options.
If you change your mind about the options you’ve added or changed, click
Restore Defaults.

4 Click Next .

5-7

5 HDL Code Importing

Specify Callback Schedule Parameters

1 Enter one or multiple component or test bench function callbacks from
the HDL simulator.

2 When you finish specifying the callback function parameters, click Add to
add the command to the MATLAB Callback Functions list.

If you have more callback functions you want to schedule, repeat the
preceding steps. If you want to remove any callback functions, highlight
the line for that function and click Remove.

3 Click Next.

5-8

Generate HDL Cosimulation Interfaces from Existing HDL Code

Generate Scripts

• Click Back to review or change your settings.

• Click Finish to generate the scripts.

Complete the Component or Test Bench Function
Complete the template using the MATLAB Editor. The generated template
contains some simple port I/O instructions and empty routines where you
add your own code.

Create a MATLAB System Object From Existing HDL
Code
For a guided tutorial on how to use the Cosim Wizard to create a MATLAB
System object for HDL Cosimulation, see Cosimulation Wizard for MATLAB
System Object (IN) or Cosimulation Wizard for MATLAB System Object (MQ).

5-9

5 HDL Code Importing

You can also find out more in the user guide section “HDL Cosimulation
Using MATLAB System Object”.

Create an HDL Cosimulation Block From Existing HDL
Code

• “Invoke Cosimulation Wizard” on page 5-10

• “Select Cosimulation Type” on page 5-11

• “Select HDL Files to Import” on page 5-12

• “Specify HDL Compilation Commands” on page 5-13

• “Select HDL Modules for Cosimulation” on page 5-14

• “Configure Simulink Ports” on page 5-16

• “Specify Output Port Details” on page 5-17

• “Specify Clock and Reset Details” on page 5-18

• “Confirm or Change Start Time Alignment” on page 5-19

• “Generate Block” on page 5-20

• “Complete the Simulink Model” on page 5-20

Invoke Cosimulation Wizard

1 Start MATLAB.

2 Enter the following command at the command prompt:

>> cosimWizard

The Cosimulation Wizard opens.

5-10

Generate HDL Cosimulation Interfaces from Existing HDL Code

Select Cosimulation Type

1 Select HDL cosimulation with Simulink to create an HDL Cosimulation
block using the HDL code you provide to define the ports, clocks, and resets.

2 HDL Simulator

Select your HDL simulator. You may choose either Cadence Incisive or
Mentor Graphics ModelSim.

3 Specify where the Cosimulation Wizard can find your HDL simulator
executables. You must enter a valid path to the HDL simulator executables
before you can continue.

5-11

5 HDL Code Importing

4 Click Next.

Select HDL Files to Import

1 Add files by clicking Add.

2 Remove files by first highlighting the file name in the File List, and then
clicking Remove.

3 Move file positions in the list by selecting the file to move and clicking
Up or Down.

4 Click Next.

5-12

Generate HDL Cosimulation Interfaces from Existing HDL Code

Specify HDL Compilation Commands

1 Review the automatically generated HDL compilation commands. Enter
any changes to the commands in the Compilation Commands box.

2 (Optional) Click Restore Default Commands to go back to the
automatically generated HDL compilation commands at any time.

3 Click Next.

5-13

5 HDL Code Importing

Select HDL Modules for Cosimulation
The dialog box for HDL Module Selection varies depending on whether you
have set Cosimulation type to ModelSim or Incisive.

HDL Module Selection for ModelSim

5-14

Generate HDL Cosimulation Interfaces from Existing HDL Code

HDL Module Selection for Incisive

1 Enter the name of the module where you see Name of HDL module to
cosimulate with.

2 Provide any additional elaboration options in Elaboration options.

3 Specify additional simulation options where you see Simulation options.
If you change your mind about the options you’ve added or changed, click
Restore Defaults.

4 Click Next .

5-15

5 HDL Code Importing

Configure Simulink Ports

1 For Port Type, confirm the auto-selected types or specify one of the
following:

• Input

• Clock

• Reset

• Unused

2 Click Next.

5-16

Generate HDL Cosimulation Interfaces from Existing HDL Code

Specify Output Port Details

1 Verify that the default sample time and the default data type what you
expect them to be. These settings are consistent with the way the HDL
Cosimulation block mask (Ports tab) sets default settings for output ports.
Do not change these values unless you are certain you do not want the
default values.

2 Click Next.

5-17

5 HDL Code Importing

Specify Clock and Reset Details

1 Verify that the default clock settings and the default reset settings are as
you expected. Do not change these settings unless you are certain you do
not want the default values.

The next screen provides a visual display of the simulation start time
where you can review how the clocks and resets line up.

2 Click Next.

5-18

Generate HDL Cosimulation Interfaces from Existing HDL Code

Confirm or Change Start Time Alignment

1 Verify that the rising or falling edge is set where you want it (from the
previous step) by looking at the start time and the reset signal.

5-19

5 HDL Code Importing

2 Make sure that the start time is where you want it.

3 Click Next.

Generate Block

Indicate whether you want HDL Verifier software to automatically determine
the timescale when you start the simulation or if you’d prefer to determine
the timescale yourself. The default is to automatically determine timescale.

• Click Back to review or change your settings.

• Click Finish to generate the HDL Cosimulation block.

Complete the Simulink Model
Insert the generated HDL Cosimulation block into your existing model.

5-20

Generate HDL Cosimulation Interfaces from Existing HDL Code

Make any desired changes or updates to your Simulink model before you
begin cosimulation.

Perform Cosimulation
After you finish creating a function or block, select the topic that describes
how you are planning to cosimulate your HDL code.

If you generated a component (matlabcp) or test bench (matlabtb) function
for cosimulation with MATLAB, select one of the following topics:

MATLAB Cosimulation

Task to Perform... Read...

Simulate an HDL component with a
MATLAB test bench

• Because you already have a
completed test bench function
written, you can pick up at this
step: “Place Test Bench Function
on MATLAB Search Path”. If you
need help finishing the function,
see “Create an HDL Verifier
MATLAB Component Function”.

• For the full process and
description, see “HDL

5-21

5 HDL Code Importing

MATLAB Cosimulation (Continued)

Task to Perform... Read...

Cosimulation Using MATLAB
Test Bench Function”.

Replace HDL component with a
MATLAB function

• Because you already have a
completed component function
written, you can pick up at this
step: “Place Component Function
on MATLAB Search Path”. If you
need help finishing the function,
see .

• For the full process and
description, see “HDL
Cosimulation Using MATLAB
Component Function”.

If you generate an HDL Cosimulation block for cosimulation with Simulink,
select one of the following topics:

Simulink Cosimulation

Task to Perform... Read...

Simulate HDL component with
Simulink test bench

• Because you already have the
HDL design and a Simulink test
bench model with the customized
HDL Cosimulation block, and
the HDL simulator is running,
you can pick up at this step:
“Run a Test Bench Cosimulation
Session”. First, however, review
the entire “Simulating an HDL
Component in a Simulink Test
Bench”.

• For the full process and
description, see

5-22

Generate HDL Cosimulation Interfaces from Existing HDL Code

Simulink Cosimulation (Continued)

Task to Perform... Read...

“Simulating an HDL Component
in a Simulink Test Bench
Environment”.

Replace HDL component with
Simulink algorithm

• Because you already have the
HDL design and a Simulink
component model with the
customized HDL Cosimulation
block, and the HDL simulator
is running, you can pick up at
this step: “Run a Component
Cosimulation Session”. First,
however, review the entire “Using
Simulink to Replace an HDL
Component”.

• For the full process and
description, see “Replacing
an HDL Component with a
Simulink Algorithm”.

For additional help on HDL Verifier topics, see the “Information Overview”
on page 4-2.

5-23

5 HDL Code Importing

Import HDL Code For FPGA-in-the-Loop Verification

In this section...

“Preparing to Use the FPGA-in-the-Loop (FIL) Wizard” on page 5-24

“Running the FIL Wizard” on page 5-24

“Performing FIL Simulation” on page 5-29

Preparing to Use the FPGA-in-the-Loop (FIL) Wizard
Before beginning:

1 Have your HDL code ready and the original model opened.

2 Set up your project tools by specifying the path to the executables. See
“Generate FIL Block” in the User Guide.

For more detailed information, see “FPGA-in-the-Loop (FIL)”. For a
demonstration of FIL, see the FPGA-in-the-Loop demos under HDL Verifier.

Altera Board with Linux

If you are using the Altera board and a Linux distribution supported by Altera,
you should first read the “USB-Blaster Download Cable User Guide” provided
on the Altera web site: http://www.altera.com/literature/ug/ug_usb_blstr.pdf.
Specifically, to program the bit file you must be a superuser. The user guide
provides instructions for making a one-time modification to a rules file to give
you that permission.

Running the FIL Wizard

1 At the MATLAB prompt, enter the following:

>> filWizard

2 Select the FPGA vendor you are using (FPGA design software) to display
boards supported for that vendor. Choose either Altera or Xilinx. If you
leave the selection at All, all supported boards will be displayed in the
pull-down menu.

5-24

http://www.altera.com/literature/ug/ug_usb_blstr.pdf

Import HDL Code For FPGA-in-the-Loop Verification

3 Select the board you are using. Adjust the Board IP address if applicable.
Click Next to continue.

4 Select your HDL source files. Indicate the top-level module. Click Next
to continue.

5-25

5 HDL Code Importing

5 Review the DUT I/O ports. Change any settings if desired. Click Next
to continue.

5-26

Import HDL Code For FPGA-in-the-Loop Verification

There must be at least one input and one output data port.

6 Select the output folder for the programming files. Click Next to continue.

5-27

5 HDL Code Importing

7 Click Build.

During the build process, the following actions occur:

• The FIL Wizard generates a FIL block named after the top-level module
and places it in a new model.

5-28

Import HDL Code For FPGA-in-the-Loop Verification

• After new model generation, the FIL Wizard opens a command window.

- In this window, the FPGA design software performs synthesis,
fit, place-and-route, timing analysis, and FPGA programming file
generation.

- When the process is finished, a message in the command window lets
you know you can close the window.

For more detailed information about the FIL Wizard, see “Generating a
FIL Block Using the FIL Wizard”. For more information about the FIL
process, see “FPGA-in-the-Loop (FIL)”. For a demonstration of FIL, see the
FPGA-in-the-Loop demos under HDL Verifier.

Performing FIL Simulation

1 Insert the generated FIL block into the existing model.

2 Open the block mask and load the programming files.

5-29

5 HDL Code Importing

Altera Board with Linux

If you are using the Altera board and a Linux distribution
supported by Altera, you should first read the “USB-Blaster
Download Cable User Guide” provided on the Altera web site:
http://www.altera.com/literature/ug/ug_usb_blstr.pdf. Specifically, to
program the bit file you must be a superuser. The user guide provides
instructions for making a one-time modification to a rules file to give you
that permission.

3 Make any other adjustments on the block mask, if desired.

5-30

http://www.altera.com/literature/ug/ug_usb_blstr.pdf

Import HDL Code For FPGA-in-the-Loop Verification

4 Run the FIL simulation.

For more detailed information, see “FPGA-in-the-Loop (FIL)”. For a
demonstration of FIL, see the FPGA-in-the-Loop demos under HDL Verifier.

5-31

5 HDL Code Importing

5-32

Index

IndexA
application software 3-4
application specific integrated circuits

(ASICs) 1-1
ASICs (application specific integrated

circuits) 1-1

B
blocksets

installing 2-3

C
client

for MATLAB and HDL simulator links 1-3
for Simulink and HDL simulator links 1-3

client/server environment
MATLAB and HDL simulator 1-3
Simulink and HDL simulator 1-3

communication
modes of 1-8

Communications System Toolbox™
as optional software 3-4

cosimulation environment
MATLAB and HDL simulator 1-3
Simulink and HDL simulator 1-3

D
demos 4-7

for HDL Verifier™ 4-1
for use with FPGA implementations 4-1

documentation
overview 4-1

for use with FPGA implementations 4-1
DSP System Toolbox™

as optional software 3-4

E
EDA (Electronic Design Automation) 1-1
Electronic Design Automation (EDA) 1-1
environment

cosimulation with MATLAB and HDL
simulator 1-3

cosimulation with Simulink and HDL
simulator 1-3

F
field programmable gate arrays (FPGAs) 1-1
FPGAs (field programmable gate arrays) 1-1

H
hardware description language (HDL). See HDL
HDL (hardware description language) 1-1
HDL Cosimulation block

in HDL Verifier™ environment 1-3
HDL simulators

in HDL Verifier™ environment 1-3
installing 2-3
working with Simulink links to 1-3

HDL Verifier™ software
definition of 1-1
installing 2-2

help
for HDL Verifier™ software 4-1

for use with FPGA implementations 4-1

I
Incisive

in HDL Verifier™ cosimulation
environment 1-3

working with MATLAB links to 1-3
Incisive or NC simulators

as required software 3-4
installation

Index-1

Index

of HDL Verifier™ software 2-2
of related software 2-3

L
links

MATLAB and HDL simulator 1-3
Simulink and HDL simulator 1-3

M
MATLAB

as required software 3-4
in HDL Verifier™ cosimulation

environment 1-3
installing 2-3
working with HDL simulator links to 1-3

MATLAB functions
test bench 1-3

MATLAB server
function for invoking 1-3

ModelSim
in HDL Verifier™ cosimulation

environment 1-3
working with MATLAB links to 1-3

ModelSim simulators
as required software 3-4

O
online help

where to find it 4-1
for use with FPGA implementations 4-1

OS platform. See HDL Verifier™ product
requirements page on the MathWorks Web
site

P
platform support

required 3-4

prerequisites
for using HDL Verifier™ software 3-1

R
requirements

application software 3-4
checking product 3-4
platform 3-4

S
server, MATLAB

for MATLAB and HDL simulator links 1-3
for Simulink and HDL simulator links 1-3

shared memory communication 1-8
Simulink

as optional software 3-4
in HDL Verifier™ environment 1-3
installing 2-3
working with HDL simulator links to 1-3

Simulink Fixed Point
as optional software 3-4

sockets 1-8
See also TCP/IP socket communication

software
installing HDL Verifier™ 2-2
installing related application software 2-3
optional 3-4
required 3-4

T
TCP/IP networking protocol 1-8

See also TCP/IP socket communication
TCP/IP socket communication

mode 1-8
To VCD File block

uses of 1-3
tutorials 4-7

for HDL Verifier™ 4-1

Index-2

Index

for use with FPGA implementations 4-1

U
users

for HDL Verifier™ software 3-1

Index-3

	toc
	Introduction
	Product Description
	Key Features

	HDL Cosimulation
	HDL Cosimulation with MATLAB or Simulink and the HDL Simulator
	Linking with MATLAB and the HDL Simulator
	Linking with Simulink and the HDL Simulator
	The HDL Cosimulation Wizard

	Communications for HDL Cosimulation
	Hardware Description Language (HDL) Support
	HDL Cosimulation Workflows Described in the User Guide

	FPGA Development
	FPGA Development with HDL Verifier
	The FIL Wizard

	FPGA-in-the-Loop Simulation
	FPGA Automation with Filter Design HDL Coder
	FPGA Automation Workflows Described in the User Guide

	TLM Component Generation
	Generating TLM Components for Use with Virtual Platform Developm
	Typical Users and Applications

	Installation
	Installing the HDL Verifier Software
	Installing Related Application Software

	Product Requirements
	What You Need to Know
	For Cosimulating with HDL Simulators
	For FPGA-in-the-Loop Simulation
	For FPGA Automation
	For Generating OSCI-Compatible TLM Components
	Additional Useful Experience
	Product Limitations

	Required Products
	Supported EDA Tools
	Cosimulation Requirements
	FPGA Verification Requirements

	System Requirements
	Product Feature and Platform Support
	Optional Application Software
	For HDL Cosimulation
	For Generating OSCI-Compatible TLM Components

	Getting Help
	Information Overview
	Online Help
	Using “What's This?” Context-Sensitive Help
	Demos and Tutorials
	Demos
	Tutorials

	HDL Code Importing
	Generate HDL Cosimulation Interfaces from Existing HDL Code
	Create a MATLAB Function From Existing HDL Code
	Invoke Cosimulation Wizard
	Select Cosimulation Type
	Select HDL Files to Import
	Specify HDL Compilation Commands
	Select HDL Modules for Cosimulation
	HDL Module Selection for ModelSim
	HDL Module Selection for Incisive
	Specify Callback Schedule Parameters
	Generate Scripts
	Complete the Component or Test Bench Function

	Create a MATLAB System Object From Existing HDL Code
	Create an HDL Cosimulation Block From Existing HDL Code
	Invoke Cosimulation Wizard
	Select Cosimulation Type
	Select HDL Files to Import
	Specify HDL Compilation Commands
	Select HDL Modules for Cosimulation
	HDL Module Selection for ModelSim
	HDL Module Selection for Incisive
	Configure Simulink Ports
	Specify Output Port Details
	Specify Clock and Reset Details
	Confirm or Change Start Time Alignment
	Generate Block
	Complete the Simulink Model

	Perform Cosimulation

	Import HDL Code For FPGA-in-the-Loop Verification
	Preparing to Use the FPGA-in-the-Loop (FIL) Wizard
	Altera Board with Linux
	Running the FIL Wizard
	Performing FIL Simulation
	Altera Board with Linux

	Index

	tables
	MATLAB Cosimulation
	Simulink Cosimulation

